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Requirements

1. F-topology of X

2. Hausdorff locally topology

3. Topological vector space / locally convex space

4. Abelian topological group

5. Hausdorff vector topology

6. Natural map
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Overview

We earlier discussed the following :

Given a non-empty set X and

a family F of functions such that each f in F maps X into a topological
space (Yf , τf ),

how to find a smallest topolgy (denoted by τF ) for X with respect to
which each member of F is continuous.

results on the topology τF or the F-topology of X or the topology
of X induced by F .
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Overview

We now discuss the same by considering

X as a normed space, and

the topologizing family F as the set X ∗ (the dual space of X with
respect to the norm topology of X ).

Already the normed space X has a topology, the norm topology.

The topology of X induced by X ∗ is a subtopology of the norm topology.
It is called the weak topology of X .

Something to be added for the following statement: Note that weak
topology can give more compact sets and convergent sequences.
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Conventions

If X is a normed space, whenever reference is made so some
topological property in X without specifying the topology, the norm
topology is implied.

The notation X ∗ and the term “the dual space of X” always refer to
the dual space of X with respect to the norm topology of X ,
expect where explicitly stated otherwise, even in contexts in which
another topology for X is being discussed.
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Weak topology of a normed space X

Definition 1.

Let X be a normed space. Then the topology for X induced by the
topologizing family X ∗ is the weak topology of X or the X ∗-topology
of X or the topology σ(X ,X ∗).

That is, the weak topology of a normed space is the smallest topology for
the space such that every member of the dual space is continuous with
respect to that topology.
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Consequence of Hahn-Banach Theorem

Theorem 2.

If x and y are different elements of a normed space X , then there is a
bounded linear functional f on X such that f (x) 6= f (y).

By the preceding result, X ∗ (the topologizing family of functions) for X is
separating (or total).
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Separation Axioms

Theorem 3 (Recall).

Let X be a set and let F be a family of functions such that each f in F
maps X into a topological space (Yf , τf ). If each Yf is T0, or T1, or T2, or
T3, or T3 1

2
, then the F-topology of X satisfies that same separation axiom.

Note that each Yf is F with the usual topology.

Every metric space is completely regular (of course, it is normal), in
particular F.

The weak topology of a normed space X is Hausdorff. Moreover, it
is a completely regular (31

2) topology.
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Duals of topologies of X induced by subspaces of X#

Theorem 4 (Recall).

Suppose that X is a vector space and that X ′ is a subspace of the vector
space X# of all linear functionals on X . Then the X ′-topology of X is a
locally convex topology, and the dual space of X with respect to this
topology is X ′.

That is,
(X , τX ′)∗ = X ′. (1)

Notation : In (1), the dual of X with respect to the topology τ is
denoted by (X , τ)∗.

The weak topology of a normed space X is a locally convex
topology, and the dual space of X with respect to the weak topology
is X ∗. That is, (X ,weak topology)∗ = X ∗ = (X , norm topology)∗.

P. Sam Johnson (NIT Karnataka) Weak Topology 10 / 60



Summary

Dual of X with norm topology / weak topology

Theorem 5.

A linear functional on a normed space is continuous with respect to the
weak topology if and only if it is continuous with respect to the norm
topology.

That is,
(X , norm topology)∗ = (X ,weak topology)∗.

Continuity and weak continuity are equivalent for linear functionals
on a normed space.
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Recall

The convergence in F-topology

Theorem 6.

Let X be a set and F a topologizing family of functions for X . Suppose
that (xα) is a net in X and x is a member of X . Then

xα → x

with respect to the F-topology iff

f (xα)→ f (x)

for each f in F .
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Convergence in weak topology

Theorem 7.

Let X be a normed space. Suppose that (xα) is a net in X and x is a
member of X . Then

xα → x

with respect to the weak topology iff

f (xα)→ f (x)

for each f in X ∗.
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Recall

Theorem 8 (Characterization of Cauchy net with respect to
X ′-topology of X ).

Suppose that X is a vector space and that X ′ is a subspace of X#. Let
(xα) be a net in X . Then the following are equivalent :

1. The net (xα) is Cauchy with respect to the X ′-topology of X .

2. For each f in X ′, the net (f (xα)) is Cauchy in F.

3. For each f in X ′, the net (f (xα)) is convergent in F.

Here F denotes the field of real or complex numbers.
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Results derived for a Hausdorff locally convex topology

All of the results derived for a Hausdorff locally convex topology
induced by a separating vector space of linear functionals hold for the weak
topology of a normed space X .

In particular, if (xα) is a net in X and x is an element of X , then

xα
w−→ x if and only if x∗xα → x∗x , for each x∗ in X ∗.

(xα) is weakly Cauchy if and only if (x∗xα) is Cauchy (that is,
convergent) net in F, for each x∗ in X ∗.
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Notations

the weak convergence of a net (xα) to an element x xα
w−→ x

(or)
w -limα xα = x

the weak convergence of a set A A
w

A topological property that holds with respect to the weak topology is said
to be weak property or to hold weakly.
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Weak topology may be a proper subtopology for the norm
topology

The weak topology is weaker than the norm topology.

It is clear that if a sequence (xn) converges to x in norm, then (f (xn))
converges to f (x), for each f ∈ X ∗.

We shall see an example that (f (xn)) converges to f (x) for all f ∈ X ∗ but
(xn) does not converge to x in norm.

Hence the weak topology is really weaker than the norm topology.
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Weak topology may be a proper subtopology for the norm
topology

Example 9.

Let (en) be the sequence of unit vectors in `2.
Since x∗en → 0 for each x∗ in `∗2, the sequence (en) converges to 0 with

respect to the weak topology. That is, en
w−→ 0.

Since ‖en‖2 = 1 for each n, the sequence (en) cannot converge to 0 with
respect to the norm topology. That is, en 9 0.
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Weak topology may be a proper subtopology for the norm
topology

We observed that the sequence (en) is not converging to 0 in norm. But if
we hit the sequence (en) with any functional, it converges to zero. Thus it
is possible for the weak topology of a normed space to be a proper
subtopology for the norm topology.

Exercise 10.

The sequence (en) in `p (1 ≤ p <∞) weakly converges to 0 but cannot
converge to 0 in norm. [ Hint : Example (9) and `∗p = `q, for 1 ≤ p <∞.]
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Recall

Another subbasis and basis of the topology (induced by a subspace
of X#)

We have discussed the following :

The collection {
f −1(U) : f ∈ F ,U ∈ τf

}
is the standard subbasis for the F-topology.

The standard basis for the F-topology is the collection of all sets
that are intersection of finitely many members of this subbasis.

We shall now discuss a collection of F-open subsets of X which contains a
particular point x ∈ X .
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Recall

Another subbasis and basis of the topology (induced by a subspace
of X#)

Theorem 11.
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Recall

Another subbasis and basis of the topology (induced by a subspace
of X#)

Theorem 12 (contd.).
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Basis for the weak topology

A particularly useful basis for the weak topology of X is given by the
collection of all sets of the form

B(x ,A) =
{
y ∈ X : |x∗(y − x)| < 1 for each x∗ ∈ A

}
such that x ∈ X and A is a finite subset of X ∗.

We shall discuss later that local base at 0,

B(0, x∗1 , x
∗
2 , . . . , x

∗
n ) =

{
y ∈ X : |x∗i y | < 1 for all 1 ≤ i ≤ n

}
is enough to analyse topological properties of the weak topology of X .

Shifting local base at 0 to any point is possible.
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Weakly boundedness

A set in a topological vector space is called bounded or von Neumann
bounded, if every neighborhood of the zero vector can be inflated to
include the set.

Conversely a set that is not bounded is called unbounded.

The concept was first introduced by John von Neumann and Andrey
Kolmogorov in 1935.

The word “bounded” makes no sense in a general topological space.
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Weakly boundedness

Definition 13.

A subset A of a topological vector space is bounded if, for each
neighbourhood U of 0, there is a positive sU such that

A ⊆ tU

whenever t > sU .

Definition 14.

A subset A of a normed space X is weakly bounded if, for each weak
neighbourhood U of 0 in X , there is a positive sU such that

A ⊆ tU

whenever t > sU .
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Recall : A result concerning boundedness with respect to
F -topology

The following is a result concerning boundedness with respect to the
topology induced on a vector space X by a subspace of X#.

Theorem 15 (A useful test for boundedness with respect to
F-topology).

Suppose that X is a vector space and that X ′ is a subspace of X#. Then
a subset A of X is bounded with respect to the X ′-topololgy if and only if
f (A) is bounded in F for each f in X ′.
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Characterization of weakly boundedness in a normed space

Corollary 16 (Characterization of weakly bounded).

Let X be a normed space. Then a subset A of X is weakly bounded if and
only if x∗(A) is bounded in F for each x∗ in X ∗.

A is weakly bounded is equivalent to requiring that “x∗(A) is a bounded
set of scalars for each x∗ in X ∗”.

A is unbounded iff there exists an x∗ ∈ X ∗ such that x∗(A) is unbounded
in F.

Let us first discuss relation between (norm) bounded and weakly bounded.
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Boundedness and weakly boundedness

Exercise 17.

Verify the following statement :
Since every weakly open set is open, every bounded set of a normed space
is weakly bounded.

We have seen an example that the weak topology of a normed space can
be a proper subtopology of the norm topology, so it might happen that a
subset of a normed space to be weakly bounded than to be bounded.

Perhaps suprisingly, this is not the case.

Theorem 18.

A subset of a normed space is bounded iff it is weakly bounded. WT-1(P-3)

We observed that A is weakly bounded is equivalent to requiring that
“x∗(A) is a bounded set of scalars for each x∗ in X ∗”. The same is
equivalent to requiring “A is bounded.”
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Recall : Vector Topology

Definition 19.

Suppose that X is a vector space with a topology τ such that addition of
vectors is a continuous operation from X × X into X and multiplicaiton of
vectors by scalars is a continuous operation from F× X into X .

Then τ is a vector or linear topology for X , and the ordered pair (X , τ)
is a topological vector space (TVS) or a linear topological space
(LTS).

If τ has a basis consisting of convex sets, then τ is a locally convex
topology and the TVS (X , τ) is a locally convex space (LCS).
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Recall : Vector Topology

The continuity of the vector space operations in a TVS creates a link
between the vector space structure and the topology of the space.

The additional property possessed by an LCS provides each of its points
with a supply of nicely shaped neighbourhoods.

Exercises 20.

1. Prove that every norm topology is a locally convex topology.

2. Prove that weak topology of a normed space is a locally convex
topology.

Weak topology is a linear topology which is Hausdorff.

If xα
w−→ x , then xα + y

w−→ x + y for any y ∈ X .

Shifting local base of any point to zero (or vice-versa) is possible.

P. Sam Johnson (NIT Karnataka) Weak Topology 30 / 60



Recall : Vector Topology

Theorem 21.

Every T0 vector topology is completely regular.

Thus, a vector topology that satisfies any of the separation axioms T0

through T3 1
2

actually satisfies all of them.

It is traditional that such vector topologies be called Hausdorff, but it
should be kept in mind that for vector topologies the Hausdorff axiom is
implied by the T0 axiom and implies completely regularity.
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Natural Map

Every element x of X induces a linear funtional fx on X ∗ defined

Fx(f ) = f (x)

for all f ∈ X ∗. It is clear that Fx is a linear functional on X ∗, and the map
x 7→ Fx is linear.

It follows from the definition that ‖Fx‖ = ‖x‖.

The Hahn-Banach theorem implies the stronger assertion that ‖Fx‖ = ‖x‖.
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Recall : Vector Topology

Theorem 22.

Every compact subset of a topological vector space is bounded. Thus,
every convergent sequence in a topological vector space is bounded.

Theorem 23.

Every Cauchy sequence in a topological vector space is bounded.

Theorem 24.

Every convergent net in an abelian topological group is Cauchy.
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Boundedness of weakly (compact sets, Cauchy sequences,
convergent sequences)

Theorem 25.

Every weakly compact set in a normed space is weakly bounded.

Theorem 26.

Every weakly Cauchy sequence in a normed space is weakly bounded.

Theorem 27.

Every weakly convergent sequence in a normed space is weakly Cauchy,
hence weakly bounded.
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Important consequences for the continuity of linear
operators

We now discuss boundedness of a linear operator between normed spaces.

Theorem 28.

Let T be a linear operator from a normed space X into a normed space Y .
The following are equivalent :

1. T is bounded.

2. T (BX ) is bounded.

3. y∗T (BX ) is bounded for each y∗ in Y ∗.

4. y∗T ∈ X ∗ whenever y∗ in Y ∗.

5. y∗T is weakly continuous on X whenever y∗ in Y ∗.
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Norm-to-norm continuous and weak-to-weak continuous

We have seen that a linear functional on a normed space is continuous if
and only if it is weakly continuous. That is, continuity and weak continuity
are equivalent for linear functionals on a normed space.

Theorem 29.

A linear operator T from a normed space X into a normed space Y is
bounded if and only if y∗T ∈ X ∗ whenever y∗ ∈ Y ∗.

The above result tells that the linear operator T is continuous if and only
if y∗T is a weakly continuous (or, continuous, both are same) linear
functional on X whenever y∗ ∈ Y ∗.
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Norm-to-norm continuous and weak-to-weak continuous

Let X ,Y be normed spaces and let T : X → Y be linear. We call T
norm-to-norm continuous if X and Y are endowed with the norm
topologies and similarly, weak-to-weak continuous if X ,Y are endowed
with the weak topologies.

Recall

Theorem 30.

Let W be a topological space and let X be a set topologized by a family
F of functions and let g be a function from W into X . Then g is
continuous iff f ◦ g is continuous for each f in F .
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Relation between norm-to-norm continuous and
weak-to-weak-continuous

Consider W = X with the norm topology in the above result.

“y∗T is continuous for each y∗ ∈ Y ∗” is same as “y∗T is weakly
continuous” for each y∗ ∈ Y ∗.

Theorem 31.

A linear operator T from a normed space X into a normed space Y is
norm-to-norm continuous if and only if it is weak-to-weak continuous.
WT-2(P-3)
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Weak-to-weak homeomorphism

Theorem 32.

A linear operator T from a normed space X onto a normed space Y is an
(linear) isomorphism of normed spaces if and only if it is a weak-to-weak
homeomorphism.

If two normed spaces are implicitly treated as the same because of some
natural isometric isomorphism from one onto the other (the way c∗0 is
usually identified with `1), then the weak topologies of the two spaces are
preserved by the same isometric isomorphism.

We now discuss a characterization for normed spaces having identical weak
and norm topologies.
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Recall : A result in F -topology concerning unboundedness
of a nonempty set which is open with respect to the
F -topology

There is a dramatic difference between F-topologies and the norm
topologies when the topolgizing subspace of X# is infinite-dimensional.

Theorem 33 (Recall).

Suppose that X is a vector space and that X ′ is a subspace of X#. If X ′

is infinite-dimensional, then every nonempty subset of X that is open with
respect to the X ′-topology is unbounded with respect to that topology.
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Weak topology

Exercise 34.

Prove that if a normed space X is infinite-dimensional, then X ∗ is
infinite-dimensional.

Theorem 35.

Every nonempty weakly open subset of an infinite-dimensional normed
space is unbounded.

Every weakly open subset of X is too big. If X is infinite-dimensional,
its open unit ball cannot be weakly open, so the norm and weak
topologies of X must differ.

Hence the weak topology of an infinite-dimensional normed space is
always a proper subtopology of the norm topology.
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Characterization of normed spaces whose norm and weak
topologies are identical.

Let X be an infinite-dimensional normed space. Consider the open unit
ball of X .

We know that every nonempty weakly open subset of an
infinite-dimensional normed space is unbounded. Hence the open unit ball
cannot be weakly open (since it is bounded), so the norm and weak
topologies of X must differ.

This shows that if norm and weak topologies of a normed are the same,
then the space of finite dimension.
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Characterization of normed spaces whose norm and weak
topologies are identical.

Recall :

Theorem 36.

Suppose that X is a finite dimensional vector space. Then X has exactly
one Hausdorff vector topology. This topology is induced by a Banach
norm.

Theorem 37.

The norm and weak topologies of a normed space are the same if and only
if the space is finite dimensional.

We proved that if norm and weak topologies of a normed are the same,
then the space of finite dimension. Converse part can be proved by using
Theorem (36).
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Is the weak topology induced by a metric ?

We proved that the norm and weak topologies of a normed X are the
same iff dimX <∞.

Therefore the weak topology of an infinite-dimensional normed space is
not induced by the norm of the space.

Is the weak topology induced by any metric?

Definition 38.

A topology (a collection τ of open sets) on a given space X is called
metrizable if there exists a metric on X such that the open sets generated
by this metric are exactly those that are members of τ .
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Is the weak topology induced by a metric ?

Sequence convergence is better than net convergence. Working with
natural numbers is better than directed sets.

If a topology is metrizable, we can get rid of nets.

Can the weak topology of an infinite dimensional normed space, be
metrizable?

If a topological space is not metrizable, sequences might not be adequate
to detect the accumulation points.

P. Sam Johnson (NIT Karnataka) Weak Topology 45 / 60



Is the weak topology induced by a metric ?

In fact, the weak topology of such a space is not induced by any metric at
all.

Theorem 39.

The weak topology of a normed space is induced by a metric if and only if
the space is finite dimensional. WT-3(P-5)

We cannot make the weak topology of an infinite dimensional normed
space metrizable. So, we cannot get rid of the nets, in general.

It is possible that some useful subsets of X could be metrizable (we shall
see later).
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Weakly Complete

Completeness is yet another property that the weak topology cannot have
unless the normed space is finite dimensional.

Definition 40.

A net (xα)α∈I in a topological vector space X is Cauchy if for every
neighbourhood U of 0 in X , there exists an αU in I such that

xβ − xγ ∈ U

whenver αU ≤ β, αU ≤ γ, and X is complete if every Cauchy net in X
converges.

Proposition 41.

The weak topology of a normed space is complete if and only if the space
is finite dimensional. WT-4(P-5)

We use Helly’s theorem to prove the preceding result.
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Relation between weakly closed and (norm) closed

We have seen that an infinite dimensional normed space X must have open
convex subset (for example, the open balls in X ) that are not weakly open.

Because of this, it might not seem likely that the closed convex subsets of
an arbitrary normed space would have to be the same as it weakly closed
convex subsets.

But surprisingly, the (norm) closure and weak closure of a convex subset of
a normed space are the same, by the following result.

Theorem 42 (Mazur, 1933).

The closure and weak closure of a convex subset of a normed space are
the same. In particular, a convex subset of a normed space is closed if and
only if it is weakly closed.
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Relation between weakly closed and (norm) closed

Corollary 43.

The closure and weak closure of a subspace of a normed space are the
same, so a subspace of a normed space is closed if and only if it is weakly
closed.

Exercise 44.

If A is a subset of a normed space, then

co(A) = co(A) = co(A)
w

= cow (A).

Corollary 45.

If (xα)α∈I is a net in a normed space that converges weakly to some x ,

then some sequence of convex combinations of members of
{
xα : α ∈ I

}
converges to x with respect to the norm topology.
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Topology of a subspace inherited from the weak topology

Suppose that M is a subspace of a normed space X . Then a statement
such as “the net (xα) in M converges weakly to an x in M” might seem
ambiguous, since it is not clear whether the statement refers to the weak
topology of X or to that of M treated as a normed space in its own right.

Fortunately, it makes no difference.

Proposition 46.

Let M be a subspace of a normed space X . Then the weak topology of
the normed space M is the same as the topology of M inherited from the
weak topology of X .
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Norm function does not have to be weakly continuous.

One of the basis properties of normed spaces is that the norm function

x 7→ ‖x‖

is continuous. However, it does not have to be weakly continuous.

For instance, the sequence (en)∞n=1 in `2 weakly converges to 0 but
‖en‖9 0. Hence the norm function on `2 is not weakly continuous.

Thus, it is not always true that ‖xα‖ → ‖x‖, when a net (xα) in a normed
space converges weakly to some x .
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Norm function does not have to be weakly continuous.

Exercises 47.

1. The norm function is weakly continuous if and only if the norm and
weak topologies of the space are the same, that is, if and only if, the
space is finite dimensional.

2. Suppose that X is an infinite dimensional normed space. Show that
there is a net in SX that converges weakly to 0.

Notice that this implies that the map x 7→ ‖x‖ from a normed space
into F is not weakly continuous if the normed space is infinite
dimensional.
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Norm function is wekly lower semicontinuous.

Theorem 48.

If (xα) is a weakly convergent net in a normed space then

‖w- lim
α

xα‖ ≤ lim infα‖xα‖ = lim
α

inf
{
‖xβ‖ : α ≤ β

}
.

Here “w- limα” is the weak limit of (xα).

Definition 49.

A function f from a topological space X into R is said to be lower
semi-continuous if

f (x) ≤ lim inf
α
f (xα)

whenever (xα) is a net in X converging to some element x of X .

Thus, the preceding theorem says that norm functions are weakly lower
semi-continuous.
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Sequential properties of the weak topology

We proved that the weak topology of a normed space is complete if and
only if the space is finite dimensional.

Hence every infinite-dimensional normed space contains a weakly Cauchy
net with no weak limit, but that does not eliminate the possibility that all
of the weakly Cauchy sequences in such a space could be weakly
convergent. This sometimes happens.

Definition 50.

A normed space is weakly sequentially complete if every weakly Cauchy
sequence in the space has a weak limit.
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Convergent Sequences

We have discussed that convergence of a sequence implies weak
convergence, but the converse need not be true if the space is infinite
dimensional.

One may ask whether weak convergence and convergence are different in
every infinite dimensional space. The answer is in the negative.

Theorem 51 (Schur’s lemma).

Every weakly Cauchy sequence in `1 is norm convergent.

Since every weakly convergent sequence is weakly Cauchy, the space `1 is
weakly sequentially complete. But is cannot be weakly complete.
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Schur’s property

Since weakly convergent sequences are weakly Cauchy, every weakly
convergent sequences in `1 is actually norm convergent to the weak limit
of the sequence.

The fact that `1 possesses the property first appeared in a 1920 paper by
J. Schur.

Definition 52.

A normed space has Schur’s property if it satisfies the following
condition : Whenever (xn) is a sequence in the space and x an element of
the space such that

xn
w−→ x , it follows that xn → x .
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Radon-Riesz property

The space `2 does not have Schur’s property but it does have the
following weakened version of the property.

Definition 53.

A normed space has the Radon-Riesz property or the Kadets-Klee
property or property (H), and is called a Radon-Riesz space, if it
satisfies the following condition:

Whenever (xn) is a sequence in the space and x an element of the space
such that xn

w−→ x and ‖xn‖ → ‖x‖, it follows that xn → x .

Example 54.

The space `2 has the Radon-Riesz property.
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Exercises

Exercises 55.

1. Prove that an infinite-dimensional normed space with its weak
topology is of the first category in itself.

2. Prove that a normed space with its weak topology is of the second
category in itself if and only if the space is finite-dimensional.

3. Show that c0 is not weakly sequentially complete.

4. Suppose that 1 < p <∞. Show that `p is weakly sequentially
complete.

5. Show that the spaces c0 and `p such that 1 < p <∞ all lack Schur’s
property.
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Summary

If X is an infinite dimensional normed space, then

1. every nonempty weakly open subsets of X is unbounded.

2. weak and norm topologies are different (converse is also true).

3. weak topology is not metrizable (converse is also true).

4. weak topology is not complete (converse is also true).

5. it may be weakly sequentially complete (for example, the space `1).

6. norm function is not weakly continuous (converse is also true).

7. weak topology is of the first category in itself.

8. weak topology is of the second category in itself (converse is also
true).
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